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Abstract

The synchronization of two coupled, similarly sized, escapement-driven pendulum clocks is studied.
These clocks are coupled by having their extended cases suspended from adjacent stiff beams that can move
together horizontally. This setup models the system that Huygens studied in 1665, using clocks that he had
designed for determining a ship’s longitude. Huygens observed that the two clocks soon ran at a common
rate, with the pendulums moving in opposition to each other. A quantitative approximate theory of this
synchronization is developed herein. This theory explicitly includes the essential nonlinear elements of
Huygens’ system, which are the escapements, as well as the suspended-clock-case and non-identical-clock
features of his setup.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Synchronization of two or more coupled, similarly sized, nonlinear, autonomous oscillating
systems occurs frequently, with many cases now being actively investigated. For instance, Mirollo
and Strogatz [1] have analyzed a model that can represent the synchronized firings of the
pacemaker cells that trigger heart beats. They also provide references to other studies of the
synchronization of biological and mechanical oscillators.
Perhaps the earliest reports of the synchronization of two coupled, similarly sized, nonlinear,

autonomous oscillating systems were by Huygens in 1665 [2,3]. Huygens observed that when two
see front matter r 2005 Elsevier Ltd. All rights reserved.
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pendulum clocks designed for determining a ship’s longitude were mounted with their extended
cases suspended from stiff wooden beams that could move together horizontally, each clock soon
adjusted its rate slightly to reach a common rate. The clocks then ran in a stable steady state at
this common rate with their pendulums moving in opposition to each other.
In his communications to others Huygens limited himself to explaining synchronization by

describing the setup (Fig. 1 shows Huygens’ setup, a verge and crown wheel escapement, and an
idealized model that incorporates essential features of this setup), noting the basic coupling
mechanism, and describing how a steady state is approached. (Huygens originally thought the
coupling was due to imperceptible air-borne forces transmitted between the pendulums of the two
clocks [3], but within days he realized [4–7] that the coupling was due to structure-borne forces.)
An embellishment of Huygens’ published explanation follows. The common beam [6,7] or the two
coupled beams [5] from which the extended clock cases are suspended can move horizontally, at
least through small displacement amplitudes. The two pendulums, oscillating in the same or
parallel planes, exert (through their pivots) oscillating forces on the two extended clock-cases,
which, in turn, exert (through their pivots) oscillating forces on the beams. If the two pendulums
are not started in opposition, the resultant oscillating force on the beams causes the beams to
oscillate at imperceptibly small amplitudes. Because the two nearly identical clocks initially run at
slightly different speeds their pendulums eventually get in opposition, the two oscillating force
components almost completely cancel, and the motion of the beams goes to zero. Then the two
clocks adjust their speeds, and their pendulums remain in opposition. So Huygens had noted two
basic features of his setup—the clocks adjusting their speeds to a common speed (Huygens’ two
clocks, when running independently, differed by daily average times that ranged from �1=2 to 6 s.
[4]); and the structure-borne nature of the coupling forces.
Korteweg [8] took the next steps in explaining Huygens’ observations. Korteweg developed a

dissipationless, three-degree-of-freedom, linear model that represents some features of Huygens’
setup (this model is essentially equivalent to one formed from the five-degree-of-freedom model
shown in Fig. 1 by clamping each extended clock-case to its support beam, removing all friction,
and removing the escapements). Korteweg then observed how the natural frequencies and mode
shapes of this model would vary as parameters vary, and used the study results to make informed
guesses that explained the observed behavior of Huygens’ real system. A paraphrase of
Korteweg’s basic idea follows. The stable, steady-state motions of the real, nonlinear, two-
coupled-clock system can be approximately represented by his model vibrating in one of its
normal modes at the corresponding natural frequency. The approximating mode/frequency pair is
found by adding linear friction to the model, realistically assuming that pendulum friction is
extremely small while beam-motion friction is (only) small, determining which of the three initial-
condition-driven, exponentially-damped oscillating modes of the lightly damped linear model
would persist the longest, and identifying the undamped normal mode that most closely
approximates this persisting damped mode. Korteweg found that the undamped mode
corresponding to the persisting damped mode would have a frequency between the frequencies
of the two pendulums (oscillating independently from fixed pivots) and a mode shape with the
pendulums moving in opposition to each other. So Korteweg added two basic ideas—that the
actual nonlinear system’s motion would be approximately like a modal motion of a related
dissipationless linear system having similar inertial and stiffness properties; and that relative
friction magnitudes would determine which mode would be the approximating one.
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Fig. 1. Huygens’ setup; a verge and crown wheel escapement; and the final, two-coupled-clock, sliding-support,

suspended-clock-case, five degree-of-freedom model.
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Recently the synchronization of Huygens-like systems has been studied by Blekhman [9],
Bennett et al. [10], and Pantaleone [11]. These investigators have each tested three-degree-of-
freedom two-clock systems that are coupled by the clock-cases being rigidly attached to a stiff
common base that can move horizontally. Blekhman and Pantaleone have observed opposite-
phase and same-phase synchronizations of the clocks’ pendulums, while Bennett et al. have only
observed opposite-phase synchronizations. Each has developed a theory that explains the
synchronized motions they observed. Blekhman’s and Pantaleone’s theories use van der Pol-like
terms to model the energy dissipation/resupply of the pendulums, while Bennett et al.’s theory
uses a more realistic continuous dissipation/impulsive resupply model. Bennett et al.’s and
Pantaleone’s theories are for identical clocks, while Blekhman’s considers the clocks to be
identical to within the first power of the small parameter of the theory.
The immediate purpose of this study was to develop an intuitively clear approximate theory

that would explain the observed synchronizations of two-clock systems. This theory would
explicitly consider the essential nonlinearities of these systems, which are the impulsive firings of
the escapements; explicitly allow for non-identical clocks; and explicitly include the suspended
clock-case feature of Huygens’ setup. It was found that the developed theory allows finding
regions in parameter space for which one can predict, with high certainty, whether or not
synchronization can occur. When synchronization is predicted, the theory allows determining the
basic characteristics (approximate frequency, amplitudes, and relative phases) of the synchronized
motions.
The basic method used is to extend Korteweg’s idea of analyzing more tractable related

systems. Thus, in addition to forming and analyzing related dissipationless- and damped-linear
systems having the same inertial/stiffness/(damping) properties as the original nonlinear system,
other related systems are also formed and analyzed. These include related dissipationless
nonlinear systems having the same inertial/stiffness/escapement properties as the original systems,
and related constrained single-degree-of-freedom nonlinear systems formed from the original
systems by adding judiciously chosen rigid, massless, frictionless linear constraints. When the
generalized constraining (reaction) forces/impulses of these systems are small, the necessarily
proportional steady-state motions of these constrained systems are expected to accurately
approximate the steady-state motions of the original intractable nonlinear systems.
In Section 2, the basic simplifications used to make the analyses tractable are discussed and

some consequences of these simplifications are mentioned. In Section 3 a fixed-pivot idealized-
escapement-driven pendulum clock model is analyzed exactly and approximately, and the exact
and approximate analyses are compared. In Section 4, the fixed-pivot, one-clock model is
modified by allowing the pendulum’s pivot (the clock-case) to move horizontally. This change
adds an essential feature of Huygens’ setup to the model and allows developing an approximate
technique for handling multi-degree-of-freedom models in a still-tractable, one-clock environ-
ment. The technique allows predicting essential characteristics of the stable, steady-state motions
of one clock systems, and is calibrated by comparing the predicted approximate motions with
numerically determined motions. In Section 5 the calibrated technique is applied to a two-
coupled-clock, three-degree-of-freedom, sliding-clock-case model. Predictions are made for two-
clock systems with parameters that could represent this simplified version of Huygens’ setup.
Huygens’ (simplified) clocks are predicted to synchronize with the pendulums moving
approximately in opposite phase, even when parameters are chosen that make the individual
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average clock rates differ by more than 100 times the differences that Huygens measured. In
Section 6, a five-degree-of-freedom, suspended-clock-case, two-clock model is developed,
parameter values are chosen that reasonably represent Huygens’ setup, and the developed
technique is applied to this model. It is predicted that, as Huygens observed, the two clocks will
synchronize with the pendulums moving nearly in opposite phase. The paper concludes by
applying the technique to a version of the three-degree-of-freedom model of Huygens’ setup for
which absence of synchronization is predicted, by speculating as to what might actually occur
when the theory predicts that the clocks will not synchronize, and by summarizing the results.
2. Basic simplifications

One simplification used here is to ignore all large pendulum amplitude effects. Thus, the angles
between the pendulums and their vertical equilibrium positions and the rates of change of these
angles are assumed to always remain small. The gravity force effects of this simplification on the
intermediate amplitude oscillations of frictionless, fixed-pivot pendulums are well known and
small: system trajectories go from a set of concentric ellipses traversed at a common rate to a set of
concentric ‘ovals’ traversed at rates that decrease slowly as amplitude increases. Effects of this
simplification also show up in the inertia force terms of the system equations when the pendulum
pivots can move along horizontal lines. It is expected that, even with these additional effects, using
the small amplitude simplification will allow meaningful predictions to be made.
A second simplification is to linearize all friction. This linear friction simplification captures two

essential features of the actual friction: that at intermediate and high velocity amplitudes, friction
forces increase as velocity magnitude increases, and, for suitably small friction parameter
magnitudes, that cyclic energy dissipated is small compared to the energy that is cyclically
converted between potential and kinetic forms. However, at low stored energy values this linear
friction model does not capture the actual behavior of real clocks, where frictionally dissipated
cyclic energy is not small compared to stored energy. Thus, all results here that have a pendulum
pass through a low-energy cycle and continue running have to be examined critically. With this
caveat, however, it is expected that using the linearized friction simplification will allow
meaningful predictions to be made.
A third simplification has to do with modeling the nonlinear energy resupply feature of the

escapement. Huygens’ new pendulum-timed clocks used a then almost-400-year-old verge-and-
crown-wheel escapement design (see Fig. 1). The oscillating angular motion of the pendulum is
magnified using a forked crank and a pair of gears, so that the verge shaft oscillates (about a
vertical axis, as shown) together with the pendulum. Falling weights, acting through pulleys and a
gear train, drive the clock hands and the crown wheel. Then, at approximately opposite positions
in the pendulum displacement cycle, opposite diameter crown-wheel teeth alternately impact the
pallets, thereby providing energy to make up for energy dissipated by friction. It is customary to
model the complex cyclic actions of this escapement on the driven, verge–gearing–linkage–
pendulum assembly, and on the driving, weight–pulley–gear–train assembly, as impulses that
act between two rigid bodies whenever pallet-to-tooth edge relative displacement becomes
zero [12,10,14,15]. In particular, all between-impulse pallet-tooth (friction and normal)
forces are assumed to have negligible effects on the dynamics of the pendulum. Thus, the
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constant-impulse-magnitude escapement model of Andronov et al. [12] is adopted here. For this
model, at two opposite points in the pendulum displacement cycle, a crown-wheel tooth hits a
pallet (the escapement fires), and a constant magnitude impulse is applied between a rigid body
having the effective inertia of the pendulum at the pitch radius of the impact, and a rigid body
having the effective inertia of the driving train at the pitch radius of the impact. This model
captures the impulsive energy resupply feature of the escapement in a straightforward way. The
actual pair of firing phases used with this model does not affect the timing results of the analyses.
For this reason, and because escapement firing when the pendulum passes through its equilibrium
position allows using a clearer, intuition-guiding notation, the firing times of the model have been
adjusted accordingly. It is expected that using this tractable model will give realistic results.
However, the assumptions that an escapement fires during an exactly zero-length displacement
interval and that any extremely small, but non-zero, impact velocity magnitude will allow
escapement firing, are unrealistic. So, as with the linear friction simplification, all results that have
a pendulum pass through a low-energy cycle and continue running have to be examined critically.
3. Fixed-pivot one-clock model

The fixed-pivot one-clock model is formed from the general model of Fig. 1 by considering only
one clock, clamping its case to its support beam, and fixing the support beam in inertial space. The
model reduces to a rigid body (the pendulum) pivoted from a fixed body (the clock-case-beam
assembly) in a downward gravitational field. (Fig. 2, which does triple duty, represents the fixed-
pivot one-clock model when y, the clock-case displacement coordinate, is constrained to be zero).
Let x be the (small) horizontal displacement of the mass center of the pendulum, measured from a
downward vertical line drawn on the clock case. Three parameters characterize the geometric and
inertial properties of the model: m, the mass of the pendulum, e, the pendulum’s length (the
distance from its pivot to its mass center), and a, the square of the ratio of the pendulum’s radius
of gyration about its mass center to its length (inertial effects of the connected linkage, gear pair,
and verge are included by increasing a so that total kinetic energy still equals 1

2
mð1þ aÞ _x2). The

resultant gravitational force on the pendulum has magnitude, mg, and acts downward through the
mass center of the pendulum. Dissipation is modeled by two viscous dampers, both exerting
horizontal retarding forces on the pendulum at its mass center. Pivot friction is modeled by a
viscous damping coefficient, cpivot, which multiplies the relative component of horizontal velocity,
_x, while air resistance is modeled by a viscous damping coefficient, cair, which multiplies the
absolute component of horizontal velocity, which for this model is the same as the relative
component. The idealized escapement acts whenever relative displacement, x, is zero and relative
velocity, _x, is non-zero. At each of these instants the idealized escapement fires, imparting a
horizontal impulse of fixed magnitude, I, between the pendulum and the clock-case at the level of
the mass center of the pendulum, acting on the pendulum in the direction of its relative velocity, _x.
Let tþj be the time just after the jth firing of the escapement and t�jþ1the time just before the
ðj þ 1Þth firing of the escapement. Then, in the interval between two successive firings,
ðtþj otot�jþ1Þ, the relative displacement satisfies the linear, homogeneous differential equation

mð1þ aÞ €xþ ðcpivot þ cairÞ _xþ ðmg=eÞx ¼ 0, (1)
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with initial conditions xðtþj Þ ¼ 0 and _xðtþj Þ � vþj a0. Eq. (1) must be satisfied until relative
displacement, x, next becomes zero at t�jþ1 when the escapement fires. At the escapement firing
instant the change in relative velocity, D _xjþ1, must satisfy the impulse/momentum balance
conditions (the change in linear momentum of a particle moving with the velocity of the mass
center must equal the sum of the applied impulse and the impulsive pivot reaction, and the change
in angular momentum about the mass center must equal the sum of the moments about the mass
center of the applied impulse and the impulsive pivot reaction). Eliminating the impulsive pivot
reaction from these conditions gives

mð1þ aÞD _xjþ1 ¼ I signð _x�jþ1Þ. (2)

Introducing the notation

on pend ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½mg=e�=½mð1þ aÞ�

p
; odecay pend ¼ ½cpivot þ cair�=½2mð1þ aÞ�,

gpend ¼ arcsinðodecay pend=on pendÞ; ond pend ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

n pend � o2
decay pend

q
,

Tnd pend ¼ 2p=ond pend; Dv ¼ I=½mð1þ aÞ�, ð3Þ

noting that gpend and ond pend are real since total pendulum friction is small; and treating x, _x, €x,
and D _xjþ1 as one-component vectors, Eqs. (1,2) can be written in the generalizable forms

mð1þ aÞfMx €xþ 2on pend sin gpendCx _xþ o2
n pendKxxg ¼ f0g, (4)
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and

mð1þ aÞfMxD _xjþ1g ¼ Ifqxg, (5)

where Mx, Cx, and Kx are dimensionless, 1� 1 inertia, damping, and stiffness matrices whose
elements equal one; qx is a one-component vector whose element equals signð _x�jþ1Þ; the scalar
factors premultiplying Cx can also be written as 2odecay pend; and the time of the ðj þ 1Þth firing of
the escapement, t�jþ1 ¼ ðTnd pend=2Þ þ tþj .
The phase-plane solution trajectory over the extended jth interval consists of two contiguous

‘arcs’—the first a logarithmic spiral representing a half-cycle of an exponentially decaying
oscillation with parametric equations

xðt� tþj Þ ¼
1

on pend

vþj

cos gpend
e�odecay pendðt�tþ

j
Þ cosðond pendðt� tþj Þ � p=2Þ,

_xðt� tþj Þ ¼
vþj

cos gpend
e�odecay pendðt�tþ

j
Þ cosðond pendðt� tþj Þ þ gpendÞ, ð6Þ

and the second a radial line of signed length,

Dv signð _x�jþ1Þ, (7)

in the direction of the velocity axis representing the (constant displacement) impulsive change in
velocity caused by the ðj þ 1Þth firing of the escapement.
The friction-caused velocity magnitude decrease during the jth oscillation half-cycle, Dvj �

jvþj j � j _x
�
jþ1j, is proportional to the magnitude of the initial velocity, Dvj ¼ jv

þ
j jð1� e�p tan gpendÞ,

while the escapement-firing-caused increase in velocity magnitude at the end of the interval is
constant, equal to the value of the parameter, Dv. Thus, for high jvþj j, next interval starting
velocity magnitude would decrease over the extended half-cycle, and for low jvþj j, next interval
starting velocity magnitude would increase over the extended half-cycle. An intermediate value of
jvþj j must therefore exist such that next interval starting velocity magnitude equals jvþj j. Denoting
this equilibrium velocity magnitude by vP, we see that for this initial velocity the phase-plane
trajectory closes.
It is straightforward to show that this closed trajectory is unique, and therefore forms a limit

cycle [16,17]; that this limit cycle is stable, in that trajectories started outside or inside but not at
the origin will asymptotically approach the limit cycle; and that the limit cycle peak velocity, vP,
and displacement amplitude, xA, are given by

vP ¼
Dv

1� e�p tan gpend

� �
¼ on pend

I

cpivot þ cair

� �
2

p

� �
p sin gpend

1� e�p tan gpend

� �
(8)

and

xA ¼
Dv

on pend

� �
e�ðp=2�gpendÞ tan gpend

1� e�p tan gpend

� �

¼
I

cpivot þ cair

� �
2

p

� �
p sin gpende

�ðp=2�gpendÞ tan gpend

1� e�p tan gpend

 !
. ð9Þ
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These solutions show that the shape of the limit cycle, when made dimensionless and plotted with
appropriate scales, is completely determined by the dimensionless friction parameter, gpend. Fig. 3
shows two limit cycle trajectories: one with sin gpend ¼ 0:1, a value large enough to show trajectory
features clearly; and one with sin gpend ¼ 0:005, a realistic value of total pendulum friction for
Huygens’ clocks. Fig. 3 also shows about 3:4 half-cycles of a low-friction trajectory that starts
outside of its limit cycle trajectory. For the higher damping value Fig. 3 clearly shows how the
limit cycle trajectory spirals in for a half-cycle and then jumps outward when the escapement fires.
For the more realistic lower damping value, however, one must look carefully to distinguish the
actual trajectories from elliptical trajectories (circular trajectories for the original scales of Fig. 3)
of a related dissipationless linear system that has the same inertial and stiffness properties as the
actual system. In addition, at the realistic lower damping value, the oscillation frequency of the
related dissipationless linear system, on pend, is an accurate approximation to the frequency of
oscillation of the actual nonlinear system, ond pend.
To complete the approximation of the actual limit cycle trajectory, it is necessary to choose an

amplitude for the trajectory of the related dissipationless linear system. This can be done using the
first step of a conceptual iteration process: form a related damped linear system having the same
inertial, stiffness, and damping parameters as the actual nonlinear system; constrain this related
damped linear system to move as the related dissipationless linear system would over a half-cycle
(harmonically); calculate the energy that would be dissipated during this constrained motion;
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sin gpend ¼ 0:005.



ARTICLE IN PRESS

M. Senator / Journal of Sound and Vibration 291 (2006) 566–603 575
equate this dissipated energy to the energy that would be imparted to the actual nonlinear system
by the firing of the escapement when the pendulum has the peak velocity of the approximating
motion; and solve the resulting equation for the peak velocity and displacement amplitudes of the
approximating harmonic motion. The results of this first iteration are identical to the limiting
forms of Eqs. (8,9) when the functions of gpend are expanded in powers of gpend and only the
constant terms are retained (in the rightmost equalities the factors after the 2=p factors are
replaced by their limiting values of one).
Note that for the original nonlinear system, or for any single-degree-of-freedom system (by the

definition of a single-degree-of-freedom system), all mass points move together proportionally,
reaching, for example, their maximum velocities simultaneously, and that this happens even
though the points do not necessarily move harmonically. However, from the equations of the
trajectories, Eqs. (6,7), and from Fig. 3, we see that for realistic values of total pendulum
friction and over a small number of half-cycles, the mass points of the pendulum do move
(together) nearly harmonically. This observation, and the success of the approximation using
constrained motions, suggest that for multi-degree-of-freedom systems, useful approximations
may be obtained by constraining these systems to move so that their trajectories project along a
modal direction of the related dissipationless linear system. This idea is explored in the next
section.
The exact and approximate analyses of the fixed-pivot, single-degree-of-freedom system can be

summarized in the following generalizable way. If the system is started with, say, high-energy
initial conditions, it will oscillate nearly harmonically at a frequency slightly less than the natural
frequency of a related dissipationless linear system that has the same inertial and stiffness
parameters. During any between impulse half-cycle of this oscillatory motion the exact phase-
space trajectory will be accurately approximated by an elliptical trajectory of the related
dissipationless linear system. Over many half-cycles friction and escapement firings will cause a
gradual drift in trajectory amplitude, until an amplitude is reached at which the dissipated energy
per half-cycle is balanced by the energy added by the firing of the escapement. Thus, the system
will oscillate nearly harmonically with fundamental frequency and phase-plane trajectory shape
largely determined by its inertial and stiffness properties and with initial amplitude largely
determined by the initial conditions. Amplitude will gradually change over many cycles until a
steady-state amplitude is reached that is largely determined by the system’s damping and
escapement properties.
4. Sliding-pivot, one-clock model

4.1. Model and equations

A sliding-pivot one-clock model is now formed from the fixed-pivot model by allowing the
pivot to move horizontally. This new model is also shown in Fig. 2, with the supporting beam
clock-case assembly now allowed to move. The sliding assembly forms a second rigid body of
mass, msup, which moves horizontally with displacement coordinate, y, against a linear spring of
stiffness, ksup, and a linear damper of constant, csup (from Fig. 1 we see that this spring models the
horizontal stiffness of the chair-backs, and this damper models the sum of the dissipations caused
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by internal chair-back friction and by the air friction forces that act on the beam clock-case
assembly).
Introduce six parameters as follows: corresponding to the x alone (y constrained to be zero,

subscript pend) parameters defined in Eqs. (3), define a y alone (x constrained to be zero, subscript
sup) frequency parameter, on sup, and a y alone decay rate parameter, odecay sup; and define a
structure-to-pendulum mass ratio parameter, m, a structure-to-pendulum undamped natural
frequency (stiffness) ratio parameter, f sp, a structure-to-pendulum decay rate ratio parameter,
f decay, and a pendulum-air-damping-to-total-pendulum-damping ratio parameter, f air, by

on sup ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksup=ðmþmsupÞ

q
; odecay sup ¼ ðcsup þ cairÞ=½2ðmþmsupÞ�,

m ¼ msup=m; f sp ¼ on sup=on pend; f decay ¼ odecay sup=odecay pend,

f air ¼ cair=ðcair þ cpivotÞ. ð10Þ

Then, denoting the coordinate vector for this system by x � x
y

n o
, the system equations are given

by Eqs. (4,5), where the matrices and the impulse forcing vector are now 2� 2 and 2� 1 and are
given by

Mx �

1
1

1þ a
1

1þ a
1þ m
1þ a

2
6664

3
7775; Cx �

1 f air

f air

1þ m
1þ a

f decay

2
64

3
75; Kx �

1 0

0
1þ m
1þ a

f 2
sp

2
64

3
75,

fqxg �
signð _x�jþ1Þ

0

( )
. ð11Þ

4.2. Setting parameter values

Because intervals between successive firings of the escapement are no longer constant and given
by a simple formula ð¼ Tnd=2Þ, numerical solutions of the system equations illustrate physical
results more clearly then symbolic formulas would. Parameter values for these numerical solutions
are chosen to represent pertinent features of Huygens’ setup (as well as this simplified model
allows).
The dimensionless inertial parameters are set at m ¼ 33 and a ¼ 0:01. These choices represent

the physical conditions that pendulum mass is small compared to support mass plus equivalent
translating clock-case mass, and that pendulum mass is mostly that of the pendulum bob and is
concentrated around the pendulums’s mass center. It is expected that other inertia parameter
choices that satisfy these physical conditions will give similar results.
There is virtually no information available for directly determining stiffness values for Huygens’

setups (for example by calculating stiffnesses of the support chairs). Proceeding indirectly, the
writer guessed that support natural frequency was low compared to pendulum natural frequency,
with the greatest likely range of their ratio being ð0of spo0:7Þ. The analyses of this section will
show that the pertinent (clocklike) system behavior is insensitive to where in this range f sp falls.
So, for the straightforward two- and three-degree-of-freedom models of this and the following
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section, the dimensionless stiffness parameter is arbitrarily set to f sp ¼ 0:7 to produce ‘limiting’
behavior; and for the more realistic five-degree-of-freedom models of Section 6 it is arbitrarily set
to a ‘most likely’ value of f sp ¼ 0:4.
The dimensionless friction parameters are set to gpend ¼ arcsinð0:005Þ, f air ¼ 0:5, and

f decay ¼ 14. This choice for total pendulum friction realistically represents the low friction of
Huygens’ clocks, and it is expected that other extremely low friction numerical choices will give
similar results. The choice of the equal division of pendulum friction between its pivot- and air-
friction parts represents a lack of knowledge about what this division might actually have been,
and a judgment that, as long as both components are included, the particular value used for the
parameter f air will not significantly affect the results. The choice of f decay ¼ 14 corresponds, at the
limiting stiffness parameter value of f sp ¼ 0:7, to a value of sin gsup � odecay sup=on sup ¼ 0:1 (it
was decided to use f decay rather than gsup as a dimensionless measure of support friction, since, as
stiffness decreases through values in the realistic range and odecay sup remains constant, gsup
increases and then is not defined). The numerical value chosen for the support friction parameter
reflects the judgment that support (mostly chair-back) friction was large compared to total
pendulum friction. It is expected that the particular value of support friction used will not
significantly affect the results as long as support friction remains significantly greater than
pendulum friction.

4.3. Related dissipationless linear system

The numerical analyses are started by analyzing the related dissipationless linear system, which
is completely characterized by the values of the inertial and stiffness parameters. The squared
undamped natural frequency ratios and the corresponding mode shapes are the characteristic
numbers (eigenvalues) and characteristic vectors (eigenvectors) of the two matrix characteristic
value problem,

ðo2
n ðkÞ=o

2
n pendÞMxxðkÞ ¼ KxxðkÞ ðxðkÞ ¼ fxðkÞ; yðkÞg; k ¼ 1; 2Þ. (12)

The characteristic values are non-negative and are distinct (for all parameter values that plausibly
model Huygens’ setup, namely m40, as it must be if the model is to have two-degrees-of-freedom,
aX0, and f 2

spX0), and the two modal vectors are linearly independent. The modal vectors are
orthogonal to each other with respect to both the inertia and stiffness matrices, x0ð1ÞMxxð2Þ ¼ 0 and
x0ð1ÞKxxð2Þ ¼ 0, and are scaled (normalized) so that their first non-zero components are positive
and their lengths with respect to the inertia matrix are one, x0ðkÞMxxðkÞ ¼ 1.
Understanding the properties of the normal modes and frequencies of the related dissipationless

linear system is a key to the physical understanding of the pendulum clock systems studied herein.
Therefore, before considering exact numerical results, it is informative to see how simple, but
accurate approximations to these results can be obtained, just by imposing the realistic physical
conditions that support mass is significantly greater than pendulum mass ðmb1Þ, pendulum mass
is concentrated around the mass center of the pendulum ða51Þ, and the square of the ratio of
support natural frequency to pendulum natural frequency is significantly less than one ðf 2

sp51Þ.
When the inertial and stiffness parameters satisfy these conditions, the individual modal

motions of the related dissipationless linear system can each be accurately approximated
by the motion of a (different) single-degree-of-freedom system formed by constraining the
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two-degree-of-freedom system. The high-frequency modal motion (subscript (2)) can be
accurately approximated by starting from an already encountered system, the one formed by
constraining the support mass to be fixed (subscript pend). Correspondingly, the low-frequency
modal motion (subscript (1)) can be accurately approximated by starting from another already
encountered system, the one formed by constraining the pendulum to be fixed to the support mass
(subscript sup). It is natural, therefore, to call the high-frequency mode/frequency pair
‘clocklike’, and the low-frequency one ‘support-like’, or ‘non-clocklike’.
To develop an approximation to the clocklike mode/frequency pair, realistically assume that in

this mode the small amplitude motion of the relatively massive support can initially be neglected.
Thus start with the support mass being fixed (the fixed-pivot clock model). Then the pendulum
would oscillate harmonically at on pend. This motion would produce a harmonically varying
horizontal component of the reaction force acting on the pivot with magnitude, mo2

n pendx̄, where
x̄ is the relative displacement amplitude of the mass center of the pendulum. Next apply this force
to the now-free-to-move support-mass/support-spring system. In the steady state this force would

produce a harmonic support mass motion with amplitude, ȳ, that satisfies ȳ ¼ � x̄
ð1þmÞ½ m

1þm�f 2
sp�
. This

easy to understand approximation straightforwardly explains essential features of the clocklike
modal motion of the related dissipationless linear system. Features of the clocklike mode/
frequency pair that we can immediately understand are that the undamped natural frequency is
near that of the fixed-pivot clock; that all mass points move proportionally, with the support mass
moving in opposition to the pendulum; that support mass amplitude is small compared to
pendulum amplitude (being smallest when support spring stiffness is zero and approximately
doubling but still remaining small when support spring stiffness is at its maximum likely value).
To develop a corresponding approximation to the non-clocklike mode/frequency pair,

realistically assume that in this mode the relative-motion-caused horizontal component of the
pivot reaction force exerted by the relatively low-mass pendulum on the support mass can initially
be neglected. Thus start with the pendulum being fixed to the support mass. Then the support-
mass/pendulum assembly would oscillate harmonically at the frequency, on sup, with a
displacement amplitude, ȳ. Next apply this harmonic displacement to the pivot of the now-
free-to-pivot pendulum. In the steady state this applied harmonic pivot displacement would

produce a harmonic relative pendulum motion with amplitude, x̄, that satisfies x̄ ¼
ȳf 2

sp

ð1þaÞ½1�f 2
sp�
. So

again, an easy to understand approximation straightforwardly explains essential features of the
non-clocklike modal motion of the related dissipationless linear system. Features of the non-
clocklike mode/frequency pair that we can immediately understand are that the undamped
natural frequency is near that of the constrained system formed by fixing the pendulum to the
support mass; that all mass points move proportionally, with the pendulum moving in-phase with
the support mass; and that pendulum amplitude, which is zero at the low stiffness limit and about
equal to support amplitude at the high stiffness limit, depends strongly on the value of the support
stiffness parameter.
Numerically calculated results support the immediate conclusions drawn from these

approximate analyses and show additional features of the system. Fig. 4 shows, in a modified
velocity plane (the axes, which are equally scaled, have the dimensions of length, so that lengths
and angles in the plane have an intuitively clear meaning and displacements and velocities can be
shown on the same plot), for f sp ¼ 0:7, the normalized modal vectors, three equal energy
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trajectory projections, a bounding parallelogram for one of the trajectory projections, and a
change in velocity vector. We see how essential features of the exact normalized modal vectors
agree with those that can be inferred from the approximate analyses—the length of xð2Þ is
approximately equal to one and is significantly greater than the length of xð1Þ; yð2Þ, the y

component of xð2Þ, is small compared to xð2Þ and has the opposite sign; the length and direction of
xð2Þ are approximately independent of the value of the stiffness parameter (this only shows
partially and indirectly in Fig. 4—the direction of xð2Þ for zero stiffness is the negative of the
direction of the change in velocity vector shown there); and jyð1Þj, while significantly less than
jxð2Þj, still significantly exceeds jyð2Þj.
Two of the equal energy trajectories shown in Fig. 4 are modal trajectories, which have all of

their energy in a normal mode of the related dissipationless linear system. The third trajectory has
half of its energy in each normal mode. All three trajectory projections correspond to zero
displacement initial conditions and non-zero velocity initial conditions. In a ‘true’ velocity plane
the all-energy-in-the-low-frequency-mode trajectory projection would start at the tip of the
on pend � xð1Þ vector, the all-energy-in-the-high-frequency-mode trajectory projection would start at
the tip of the on pend � xð2Þ vector, and the half-energy-in-each-mode trajectory projection would
start at the tip of the ð1=

ffiffiffi
2
p
Þon pend � ðxð1Þj! xð2ÞÞ vector (the upper right corner of the bounding

parallelogram). The normalizing of the modal vectors to have unit lengths with respect to the Mx
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matrix assures that the two modal trajectories have equal energies, and the (1=
ffiffiffi
2
p

) factor
for the third trajectory assures that it has equal energy with half in each mode. In the modal
trajectories all mass points (those on the pendulum and those on the support) move together
proportionally (this shows up as the velocity and displacement plane trajectory projections
always remaining on lines through the origin having the common slope of the modal vector)
and harmonically (and therefore, periodically). Contrastingly, all mass points would not
move together proportionally and harmonically for the half-energy-in-each-mode trajectory,
even though the linearity of the system guarantees that this motion is the instantaneous sum
of (equal fractions of) the two modal motions. However, Fig. 4 suggests that many observers
might describe the velocity plane projection of the equal-energy-in-each-mode trajectory as
showing a rapid, high velocity amplitude, primary oscillating motion in the clocklike modal
direction with a superposed slow, low velocity amplitude, secondary oscillating (drifting) motion
in the non-clocklike modal direction. These descriptions, and the arguments leading to the modal
vector approximations and to the designations of these vectors as clocklike and non-clocklike,
provide strong hints that the clocklike modal vector will play a controlling role in the following
analyses.

4.4. Related dissipationless nonlinear system

The escapement is now added to the model and the resulting related dissipationless nonlinear
system is analyzed. The formal analysis of the related dissipationless nonlinear system generalizes
to higher-degree-of-freedom systems and introduces the normal coordinates subsequently used for
the analyses of the related damped linear systems. But, before outlining the formal analysis, it is
instructive to do an intuitively clear, but still exact analysis that is straightforward because this
system has two-degrees-of-freedom. Since escapement firings only produce internal impulses on
the system, and since the external horizontal force generating elements, the support spring and
damper and the pendulum air resistance damper, cannot exert impulsive reactions on the system,
the velocity of the mass center of the system does not change when the escapement fires. This
restriction on mass center velocity change provides a necessary additional relation between the
components of the change in velocity vector caused by the ðj þ 1Þth firing of the escapement:
D _yjþ1 ¼ �D _xjþ1=ð1þ mÞ. The change in velocity vector (for negative before-firing pendulum
relative velocity) is shown in Fig. 4 at a large scale, chosen so that this vector’s projection along
the clocklike modal direction equals the length of the normalized clocklike modal vector. At this
scale Fig. 4 clearly shows that the firing of the escapement causes a significantly greater change in
velocity in the direction of the clocklike modal vector (relative to the length of this vector) than in
the direction of the non-clocklike modal vector (relative to the length of this vector). This
significantly greater change in the clocklike modal velocity component translates directly to a
significantly greater change in clocklike modal energy. So we see that escapement firing also favors
the clocklike over the non-clocklike modal direction.
The formal analysis starts by symbolically solving the impulse/momentum balance equation,

Eq. (5), for the change in velocity vector, D _xjþ1. Towards this end, define a normalized modal
matrix, X, with columns equal to the normalized modal vectors in order of increasing frequency,

X � xð1Þ
yð1Þ

n o
xð2Þ
yð2Þ

n oh i
, introduce normal coordinates, w � w1

w2

n o
, by x � Xw, substitute this definition



ARTICLE IN PRESS

M. Senator / Journal of Sound and Vibration 291 (2006) 566–603 581
into the system equations, Eqs. (4,5), and premultiply the results by X0, the transpose of the
normalized modal matrix. In these normal coordinates the system equations are identical to Eqs.
(4,5), with all appearances of x (in the variables and subscripts) replaced by w, and the matrices
and forcing vector given by

Mw ¼
1 0

0 1

" #
; Cw ¼

x0ð1ÞCxxð1Þ x0ð1ÞCxxð2Þ

x0ð2ÞCxxð1Þ x0ð2ÞCxxð2Þ

2
4

3
5; Kw ¼

o2
n ð1Þ

o2
n pend

0

0
o2

n ð2Þ

o2
n pend

2
666664

3
777775,

fqwg ¼ signðxð1Þ _w
�
1;jþ1 þ xð2Þ _w

�
2;jþ1Þ

xð1Þ

xð2Þ

( )
. ð13Þ

Because Mw is the 2� 2 identity matrix, this change to the normal coordinates of the related
dissipationless linear system has effectively solved the impulse/momentum balance equations.
Note that, by the definition of the w-coordinates, the unit vectors, wð1Þ �

1
0

� �
and wð2Þ �

0
1

� �
,

respectively transform to the normalized x-coordinate modal vectors, xð1Þ and xð2Þ. Thus, the
solution of the impulse/momentum balance equations can be written directly in w-coordinates and
then transformed to x-coordinates by premultiplying both sides by the normalized modal matrix.
This gives

D _wjþ1 ¼
I

mð1þ aÞ
signðxð1Þ _w

�
1;jþ1 þ xð2Þ _w

�
2;jþ1Þfxð1Þwð1Þ þ xð2Þwð2Þg, (14)

which transforms to

D _xjþ1 ¼ Dv signð _x�jþ1Þfxð1Þxð1Þ þ xð2Þxð2Þg.

Then, since jxð2Þjbjxð1Þj, we see formally that the change in velocity vector has a significantly
greater relative component along xð2Þ than along xð1Þ.

4.5. Related damped linear system

So far, analyses of an inertia/stiffness model and an inertia/stiffness/escapement model have
indicated that these related systems favor the clocklike mode/frequency pair over the non-
clocklike one. Now an inertia/stiffness/damping model, the related damped linear system, is
analyzed. Because of the orthogonality of the modal vectors with respect to both the inertia and
stiffness matrices, the w-coordinate inertia and stiffness matrices are diagonal. The w-coordinate
damping matrix, however, can have non-zero off-diagonal elements, and these elements represent
all the linear coupling of the system (note that the firings of the escapement also weakly, and
nonlinearly, couple the w-coordinate equations of the original nonlinear system). Before
examining effects of the linear coupling in more detail, it is useful to consider a simpler, (more
distantly) related, w-coordinate-defined, uncoupled damped linear system. In w-coordinates this
related uncoupled damped linear system has the elements of its inertia and stiffness matrices and
the diagonal elements of its damping matrix equal to those of the related (coupled) damped linear
system (see Eqs. (13)); however, the off-diagonal elements of its damping matrix are zero.
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Analyzing the related uncoupled damped linear system allows us to understand, without the
distractions produced by the coupling, a basic feature of the related damped linear system—that if
modal decay rates are significantly different from each other, then one damped mode will persist
after the other has effectively decayed to zero.
Start, by analogy with the definitions of the constrained decay rates, odecay pend and odecay sup, by

defining modal and coupling decay rates, odecay ðkÞ � odecay pend � Cwðk; kÞ and odecay ð1;2Þ �

odecay pend � Cwð1; 2Þ (in general the subscripts (k) and (i,j) are used to denote the diagonal and
off-diagonal elements of the w coordinate modal and coupling decay rates). Then, observe from
Eqs. (4,11,13) that the dominating parts of the diagonal terms of the Cw matrix arise from the
large magnitude 1þm

1þa f decay term of the Cx matrix being multiplied by the squares of the y-
components of the normalized modal vectors. Because the square of the y-component of the non-
clocklike modal vector is significantly greater than that of the clocklike modal vector, the non-
clocklike mode’s decay rate is significantly greater than that of the clocklike mode (for this
example about 5.5 times greater). We can see effects of this large difference in decay rates by
returning to Fig. 4 and imagining what three equal initial energy trajectories of the related
uncoupled damped linear system would look like. The two damped modal trajectories would
again start at the tips of the modal vectors and the equal-initial-energy-in-each-mode trajectory at
the upper right corner of the parallelogram. Now the modal trajectory projections would
represent exponentially decaying damped oscillations with damped modal natural frequencies,
ond ðkÞ, that are slightly less than the corresponding undamped modal natural frequencies, on ðkÞ.
In these damped modal motions the mass points of the system would no longer move
harmonically (or periodically), but the mass points would still move together proportionally,
reaching, for example, zero displacement simultaneously. The damped modal trajectories would
still lie in the directions of the modal vectors of the related dissipationless linear system, but would
now decay, with the non-clocklike mode decaying more rapidly than the clocklike mode.The
damped equal-initial-energy-in-each-mode trajectory would start by looking like a lightly damped
version of the trajectory pictured in Fig. 4. However, the bounding parallelogram, instead of being
fixed, would now have sides that shrink, with the sides parallel to the non-clocklike modal vector
shrinking about 5:5 times more rapidly than the initially longer sides parallel to the clocklike
modal vector. The result would be that after, say, five time constants of the more rapidly decaying
motion (5=odecay ð1Þ), the decaying oscillating motion that started out with equal energy in each
mode would have practically all of its energy in the clocklike mode. The clocklike mode would
persist after the non-clocklike mode has disappeared. So, uncoupled damping clearly favors the
clocklike mode/frequency pair over the non-clocklike one, and this favoring ultimately comes
about mainly because support mass is significantly greater than pendulum mass and support
friction is significantly greater than pendulum friction.
Including coupling in the analysis of the related damped linear system shows essentially the

same result, that the clocklike damped mode would persist after the non-clocklike one has
decayed. The analysis also shows that for a damped modal motion the mass points of the system
no longer move exactly proportionally but only approximately proportionally. Because all friction
is small, the decay rates and damped natural frequencies of the coupled model (the real and
imaginary parts of the complex-valued characteristic numbers, �odecay ½k� � iond ½k�) would be
approximately equal to those calculated for the uncoupled model (subscript (k)). These results are
illustrated in Fig. 5. There, equal initial energy velocity plane trajectory projections analogous to
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those of Fig. 4 are shown. The trajectories are shown offset from each other for clarity—each
trajectory is actually centered about the zero ordinate value. The upper curve shows the trajectory
projection of the all initial energy in the damped non-clocklike (low frequency) mode case, the
second curve shows the trajectory projection of the all initial energy in the damped clocklike (high
frequency) mode case, and the third and fourth curves show the trajectory projection of the half
initial energy in each damped mode case. The first three curves are drawn over an interval
corresponding to five time constants of the most rapidly damped (the low frequency) mode,
ð0oto5=odecay ½1�Þ, while the fourth curve is drawn over the last fifth of this interval.
Instead of the exactly proportional damped modal motions of the related uncoupled damped

linear system, we see nearly proportional damped motions. The nearly proportional nature of the
motions shows up, for example on the top curve, as the inwardly spiraling trajectory projection
lying near the line through the origin that has the direction of the low-frequency modal vector
rather than lying exactly on it. Instead of the pendulum relative velocity and the support velocity
reaching their minimum values simultaneously, as they would in a proportional motion, we see a
small lag, with the pendulum reaching its minimum velocity (at the vertical tangent to the left of
the outer loop of the spiral) slightly before the support mass reaches its minimum velocity (at the
horizontal tangent below the outer loop of the spiral). A similar result holds for the clocklike
mode. Again the motion is nearly proportional rather than exactly proportional, with the spiral
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lying near the modal direction rather than directly along it. And similarly, instead of the
pendulum relative velocity and the support velocity reaching opposite extreme values
simultaneously, as they would in the corresponding proportional motion, the support mass
achieves its maximum velocity (at the horizontal tangent above the outer loop of the spiral)
slightly before the pendulum achieves its minimum velocity (at the vertical tangent to the left of
the outer loop of the spiral). Note that the clocklike damped modal motion is more nearly
proportional than the non-clocklike one, as its longer spiral is narrower than that of the non-
clocklike motion. The half-initial-energy-in-each-damped mode trajectory shows effects of the
different decay rates and initial amplitudes. We can recognize the first three left-right-left
swings of this trajectory as a lightly damped version of the corresponding undamped trajectory of
Fig. 4, before the swings of this damped trajectory smear together. The basic result is apparent on
the bottom curve. We see that after the more heavily damped, smaller initial amplitude, non-
clocklike mode has effectively decayed to zero, the trajectory has now become a lower-energy
version of the all-energy-in-the-damped-clocklike mode trajectory. A change in velocity vector is
also superposed on the bottom trajectory to show how the (mean) direction of the persisting
damped mode and the direction of the change in velocity vector almost coincide but are
distinct (these directions coincide at the zero-stiffness-parameter limit). So we see that for the
related damped linear system, the clocklike mode is again favored over the non-clocklike
one, the immediate reason being that the modal decay rate of the clocklike mode (as
measured approximately by odecay ð2Þ or exactly by odecay ½2�) is significantly less than that of the
non-clocklike mode.

4.6. Related constrained single-degree-of-freedom systems

Next consider a set of related, constrained, single-degree-of-freedom nonlinear systems that
have the same inertial, stiffness, dissipational, and escapement properties as the original two-
degree-of-freedom nonlinear system. We can understand the basic features of these constrained
systems by considering a modal motion of the related dissipationless linear system. For such a
motion, where all mass points of the system move together proportionally, the point on the
(possibly extended) centerline of the pendulum (the line on the pendulum from its pivot to its mass
center) at a signed distance below the pivot of d ðkÞ � �ðyðkÞ=xðkÞÞ � e has identically zero horizontal
displacement. If a small, massless rigid pin were pressed into the pendulum at this point with its
projecting end moving without friction between vertical guides, the modal motion of the related
dissipationless linear system would not change, and the system would continue to move with zero
constraining (reaction) forces exerted on the pin by the guides. Now imagine that a similar rigid,
massless, frictionless constraining pin were placed anywhere along the (possibly extended)
centerline of the pendulum of the actual nonlinear two-degree-of-freedom system. This linear
constraint (linear between the coordinates, x and y) would reduce the system to a nonlinear single-
degree-of-freedom system with all mass points constrained to move proportionally. The dynamic
properties of the constrained system would be closely related to those of the unconstrained
system. The important basic difference would be that the guides would now be able to exert
reaction forces and impulses on the system. From the previous analyses we might expect that such
a constraint, forcing the original system to move proportionally, with velocity- and displacement-
plane trajectory directions corresponding to the clocklike modal direction of the related
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dissipationless linear system, would allow constrained motions that are accurate approximations
to the motions of the actual nonlinear system.
Each pin location determines a different constrained system, and corresponds to a direction in

the x; y coordinate, velocity- and displacement-subspaces. The direction of the clocklike modal
vector of the related dissipationless linear system is of most interest for two reasons. First, the
firing of the escapement causes a change in velocity vector that departs only slightly from this
clocklike modal direction (see Figs. 4, 5). Thus, constraining the system so that the trajectory
projections lie in this direction produces what one hopes will be relatively small escapement-
firing-associated errors. And second, the persisting (clocklike) modal trajectory of the related
damped linear system lies, on the average, in this direction, so that constraining the trajecto-
ries to this direction would again produce what one hopes will be relatively small dissipation-
associated errors.
Each constraining direction and the differential- and impulse/momentum balance equations of

the two-degree-of-freedom nonlinear system determine the differential- and impulse/momentum
balance equations of a related constrained single-degree-of-freedom system. These constrained
equations are similar to the equations of the fixed pivot clock (with different coordinates and
different parameter values), and the solutions of Section 3 apply. So all characteristics of the
steady-state motion of the constrained system can be determined. Because a one-clock system has
only one escapement, computational problems associated with the system equations being stiff
[18,19] (the intervals between the firings of different escapements can be small compared to the
intervals between successive firings of individual escapements) do not arise. Thus a steady-state
solution of the nonlinear system equations can be found numerically and compared to the
approximate solutions corresponding to different constraining directions. Fig. 6 shows such a
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comparison. It shows an exact, numerically calculated steady-state velocity plane trajectory
projection and compares it to three constrained system trajectory projections: one in the direction
of the clocklike modal vector, one in the neighboring direction of the change in velocity vector,
and one half-way between these two. Note that unlike Figs. 3–5, the ordinate and abscissa scales
are not equal in Fig. 6—the ordinate scale is magnified so that the range of ordinate values is only
1=32 that of abscissa values. We see how the easily calculated characterizing features of the
steady-state motion of the modally constrained single-degree-of-freedom system accurately
approximate the corresponding features of the exact system. For example, the exact pendulum
velocity amplitude, the rightmost extreme abscissa value along the calculated curve (at the outer
end of the line segment representing an escapement-firing-caused change in velocity), is accurately
approximated by the abscissa of the ‘þ’ symbol that represents the steady-state pendulum velocity
amplitude of the modally constrained system. We also see how sensitive the accuracy of this
approximation is to the constraint direction in the velocity- and displacement-planes being exactly
in the direction of the (clocklike) modal vector of the related dissipationless linear system—small
departures from the exact direction produce relatively large errors in amplitude.
An important difference between the steady-state motions of the sliding- and fixed-pivot clocks

should be noted. Constraining the sliding pivot system to the direction of the x-axis1 produces a
dimensionless velocity amplitude that is slightly greater than one (see the maximum ordinate value
of the lower damping trajectory of Fig. 3). However, small departures from this preferred
constraining direction produce large decreases in steady-state pendulum velocity amplitude. For
example, the small direction changes to the directions of the D _xjþ1 and xð2Þ vectors reduce the
pendulum velocity amplitudes to about 0:75 and 0:44. Because support friction is significantly
greater than pendulum friction, even small support mass amplitudes (small angles with the x-axis
in the velocity- and displacement-planes) cause significant reductions in pendulum amplitudes. In
a practical sense then, the fixed-pivot clock is optimum, in that its motion does not waste any
escapement-supplied energy in moving the support mass against the relatively high support
friction. We should also make a reality check here. We have to decide whether this model, with
added threshold friction and finite escapement limits would, for a clock designed for a fixed-pivot
pendulum velocity amplitude of 1:0, have a threshold restarting velocity amplitude that is
significantly less than 0:44. The writer guesses that this would happen, so that the predicted
motions could actually occur.
4.7. Application to two-clock systems

The agreement of the approximate and exact analyses of this one-clock system leads us to
expect that similar approximate analyses could give accurate approximations to the synchronized
steady-state motions of two-clock systems. For example, suppose a two-clock system were started
with high-energy initial conditions. Further, suppose that this system has a clocklike mode/
frequency pair with a decay rate that is significantly less than the smallest decay rate of the
remaining mode/frequency pairs. Then, while the stored energy remains high, the cyclic energy
supplied by the escapements would be small compared to the cyclic energy dissipated in friction,
1This simplified language is used to concisely, if imprecisely, express the idea that the direction of the trajectory

projections in the velocity- and displacement-subspaces is in the direction of the x-axis.
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and the system would almost oscillate the way its related damped linear system would. After a
while the motion would become a slightly perturbed (by the escapement firings) version of the
persisting motion of the related damped linear system. Since this motion would be approximately
proportional, the zero displacement times of the two pendulums would be nearly simultaneous,
and the two escapements would fire nearly simultaneously, in the directions (same or opposite)
determined by the modal direction corresponding to the favored, lowest-decay-rate mode. If
these nearly simultaneous firings would put significantly more energy into the damping-favored
mode than into any other mode, we would then expect that the pendulums would synchronize,
moving in the steady state in a way similar to the way the single-degree-of-freedom system
formed by constraining the two-clock system to move in the favored modal direction would move.
We would, therefore, expect this two-clock system to synchronize, with its steady-state
synchronized motions accurately approximated by the steady-state motions of the appropriate
related modally constrained single-degree-of-freedom system. This technique is applied in the
following sections.
5. Two-coupled-clock, sliding-pivot, three-degree-of-freedom model

5.1. Model and equations

We now analyze a straightforward two-coupled-clock system—the system formed by clamping
the support beams of two sliding-pivot, side-by-side, one-clock models of Fig. 2 together (this
system can also be visualized as being formed from the five-degree-of-freedom model of Fig. 1 by
clamping the clock cases to their already clamped-to-each-other support beams). This two-clock
system is closely related to the one-clock systems that form its parts. However, the analyses will
show that the steady-state behavior of this two-clock system can be significantly different. Even
though the non-clocklike- and one clocklike-mode/frequency pair of the related dissipationless
linear system of the two-clock system are straightforward generalizations of those of the one-clock
system, the additional, also clocklike, mode/frequency pair is the one that would typically be
associated with an approximating synchronized steady-state solution.
To have the notation reflect the connectivity of this system, the individual clocks are given the

subscripts 1 and 3, and the coordinate vector is denoted by x � fx1; y; x3g. The system is described
by 16 parameters: six for each clock, mi, ai, cpivot i, cair i, ei, and I i ði ¼ 1; 3Þ; the gravitational
acceleration, g; and three support parameters, 2msup, 2csup, and 2ksup. The system equations can
be written in an intuitively clear form if redundant notation is introduced. Thus, the clocks are
also described by six non-subscripted average parameters and six dimensionless (normally small)
half-difference parameters defined by six pairs of equations like m � ðm1 þm3Þ=2 and
�m � ðm1 �m3Þ=ð2mÞ. The matrices and the impulse forcing vector for this two clock system
can then be written as

Mx �
1

mð1þ aÞ

m1ð1þ a1Þ m1 0

m1 m1 þ 2msup þm3 m3

0 m3 m3ð1þ a3Þ

2
664

3
775,
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Cx �
1

cpivot þ cair

cpivot 1 þ cair 1 cair 1 0

cair 1 cair 1 þ 2csup þ cair 3 cair 3

0 cair 3 cpivot 3 þ cair 3

2
664

3
775,

Kx �
1

mg=e

m1g=e1 0 0

0 2ksup 0

0 0 m3g=e3

2
664

3
775; fqxg �

1

I

I1 signð _x
�
1;jþ1Þ

0

I3 signð _x
�
3;jþ1Þ

8>><
>>:

9>>=
>>;, ð15Þ

where, to simplify notation, it is understood that if only escapement 1 fires, I3 is to be set to zero;
if only escapement 3 fires, I1 is to be set to zero; and if both escapements fire simultaneously, the
impulse forcing vector is to be used as written.

5.2. Setting parameter values

Numerical results are calculated for two manifestations of this model—an identical-clock
manifestation and a similar-clock manifestation with small, but non-zero half-difference
parameters. The average parameter values for both manifestations are made equal to each other
and are chosen to be the same as the parameters of the one-clock model of the previous section.
The half-difference parameters for the different-clock manifestation were chosen as follows.
First, a reference half-difference pendulum length parameter, �e ref , is calculated by
�e ref � 6=ð24 � 3600Þ � 0:00007. For as realistic a model of Huygens’ setup as this three-degree-
of-freedom model allows, this value of �e would make effects of pendulum length alone cause
Huygens’ two, nominal-one-second-period [13] clocks to have fixed-pivot undamped natural
frequencies that correspond to about a 6 s difference per day, the maximum difference that
Huygens observed with his clocks running independently [4]. To clearly show effects of having
similar, but unequal, clock parameter values, the magnitude of the difference between the
pendulum lengths of Huygens’ clocks was exaggerated. The algebraic signs of the half-difference
parameters were also chosen so that all parameters act in the same direction, the direction that
makes clock 1 more sluggish. Thus an exaggerated value of �e over 100 times greater than �e ref ,
and arbitrary but still reasonably small values for the other five �’s were chosen: �e ¼ þ0:008,
�m ¼ þ0:004, �a ¼ þ0:10, �cpivot ¼ þ0:08, �cair ¼ þ0:08, and �I ¼ �0:12.

5.3. Results

Analysis results for these manifestations are shown in Table 1—rows 1–6 show the undamped
natural frequencies and modal vectors of the related dissipationless linear systems (the modal
vectors are normalized here by x0ðkÞMxxðkÞ ¼ 2 to facilitate comparisons with those of the one-
clock system); rows 7–10 show the change in velocity vectors; rows 11–14 show the modal- and
coupling-decay rates for the related damped linear system; and rows 15–17 show the normalized
velocity amplitude components for the modally constrained single-degree-of-freedom systems
(subscripts fkg).
Consider the identical clock manifestation first. If we temporarily unclamp the support beams

and start each of the resulting one-clock systems with identical initial conditions, the two systems
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would move identically, and the support beams could be reclamped without changing the
subsequent motion. A consequence of this is that two of the mode/frequency pairs of the related
dissipationless linear system are two-clock versions of those of the one-clock system. In these
modes the two pendulums move together in the same phase. Contrastingly, if we start the
complete identical clock system with equal and opposite pendulum displacements and velocities
and with zero support mass displacement and velocity, then each pendulum would move exactly
opposite to the other, and the resultant reaction force and impulse exerted on the support mass
would be identically zero. The support mass would remain stationary, and each pendulum would
move like the pendulum of a fixed-pivot clock, in opposite phase to the other. This motion
corresponds to the intermediate frequency mode/frequency pair. Important (additional three-
degree-of-freedom-system) results are that two clocklike mode/frequency pairs now exist and that
support mass amplitude for the clocklike, pendulums-in-opposite-phase mode (2) is significantly
less than support mass amplitude for the clocklike, pendulums-in-same-phase mode (3),
jyð2Þj5jyð3Þj.
We can see consequences of this two-clocklike-modes/one-non-clocklike-mode result by

thinking about three Fig. 4-like, equal-modal-energy, two-mode-pairings. The xð1Þ; xð3Þ and
xð1Þ; xð2Þ pairings (projected on an ð _x1; _yÞ plane) would show bounding parallelograms with
significantly longer sides parallel to the clocklike modal vectors. These comparisons, therefore,
each favor the clocklike mode over the non-clocklike mode. However, the xð2Þ;xð3Þ pairing (now
projected on an ð _x1; _x3Þ plane) would show a bounding parallelogram with almost equal length
sides and would not favor either clocklike mode over the other.
Next, examine the change in velocity vectors. We can understand the numerical results by

observing that, because support mass is significantly greater than pendulum mass, firing of
escapement 1 (for positive pendulum 1 pre-firing relative velocity) would produce a (normalized)
change in velocity vector with x coordinates that can be approximated by ð1; 0; 0Þ, the fixed
support result. In the ð _x1; _x3Þ plane this vector would have approximately equal components along
the projections of the clocklike modal vectors, since these projections have approximately equal
lengths, are orthogonal to each other, and make equal angles with the _x1 axis. Row 7 of Table 1
shows that the exact, escapement 1-firing-caused change in velocity vector does indeed have the
expected approximately equal magnitude components along the two clocklike modal directions
and also has a significantly smaller component along the non-clocklike modal direction. When
only escapement 3 fires (row 8) the change in velocity vector has the same three-component
magnitudes but has the sign of the xð2Þ component reversed. For simultaneous, same-direction
escapement firings (row 9) the change in velocity vector is the sum of the individual vectors, and
for simultaneous, opposite direction escapement firings (row 10) it is the difference. Three
important results emerge. Simultaneous same-direction firings produce a large change in velocity
in the clocklike, same-pendulum-phase mode (3), a small change in velocity in the non-clocklike,
same-pendulum-phase mode (1), and zero change in velocity in the clocklike, opposite-pendulum-
phase mode (2). Simultaneous opposite-direction firings produce a large change in velocity in the
clocklike, opposite-pendulum-phase mode (2), and zero change in velocity for the two same-
pendulum-phase modes. And the magnitudes of the large changes in modal velocity for the two
clocklike modes are approximately equal. We conclude then that simultaneous escapement firings
also favor each clocklike mode over the non-clocklike mode, but do not favor one clocklike mode
over the other.
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Next consider the modal and coupling decay rates of the related damped linear system. As for
the one-clock system, the modal damping of the clocklike, high-frequency mode is significantly
less than that of the non-clocklike, low-frequency mode. Now, in addition, we see that the modal
damping of the clocklike, intermediate frequency mode is significantly less than that of the
clocklike, high-frequency mode. The basic reason for this is that the relatively high support
friction dissipates more energy in the greater-support-velocity-amplitude, high-frequency mode.
So we see that the analysis of the related damped linear system not only favors each clocklike
mode over the non-clocklike mode, but also favors the clocklike, pendulums-in-opposite-phase
mode over the clocklike, pendulums-in-same-phase mode. Additionally, note that because of the
symmetries of this identical clock system, there is no linear coupling between the two same-phase
modes and the opposite-phase mode—the off-diagonal elements in the second row and column of
the odecay ði;jÞ matrix are all zero.
Finally, consider the related modally constrained single-degree-of-freedom systems. First note

that two independent linear constraints are required to reduce the three-degree-of-freedom system
to a modally constrained single-degree-of-freedom system. For example, to constrain the system
to move with coordinates varying in proportion to those of the clocklike, pendulums-in-same-
phase mode, one constraint might be a pin pressed into the extended centerline of pendulum 1 a
distance above its pivot of d ð3Þ � ðjyð3Þj=x1ð3ÞÞ � e sliding in a frictionless vertical slot, and the other
a same direction timing belt running over equal diameter massless timing pulleys that rotate with
the pendulums. We observe that the constrained, steady-state pendulum velocity amplitudes
corresponding to the clocklike, pendulums-in-opposite-phase mode are significantly greater than
those corresponding to the clocklike, pendulums-in-same-phase mode. Again we see the system
favoring the pendulums-in-opposite-phase clocklike mode over the pendulums-in-same-phase
one. And the basic reason is the same—in the favored mode the high friction support mass does
not move, so that the escapement supplied energy only gets dissipated in the pendulum dampers.
This clear favoring of the clocklike, pendulums-in-opposite-phase mode leads us to predict that

for virtually all initial conditions, the pendulums of the idealized system would synchronize and
move in the synchronized steady state with a motion that is accurately approximated by that of
the favored modally constrained single-degree-of-freedom system. Here, because of the
symmetries of the identical clock system, we can even do a little better. If the system were
started with arbitrary, but equal and opposite pendulum displacements and velocities and zero
support mass displacement and velocity, an exact solution of the system equations is possible. The
system would run the way two identical, fixed-pivot clocks simultaneously started in opposite
directions would. This would happen because the linear coupling between the opposite-phase
mode and each of the two same-phase modes is zero (rows 11–13) and because simultaneous
opposite direction escapement firings cause zero changes in the same-pendulum-phase modal
velocities (row 10). Similarly, if the system were started with arbitrary, but equal pendulum
displacements and velocities and arbitrary support mass displacement and velocity, an exact
numerical solution of the system equations is possible. In the steady state the system would run in
a pendulums-in-same-phase version of the calculated motion shown in Fig. 6. From the results of
the analyses we also expect, that if we developed numerical techniques for accurately handling
non-simultaneous escapement firings, we would find the favored, pendulums-in-opposite-phase
steady-state motion to be stable with respect to small departures in initial conditions, and the
pendulums-in-same-phase steady-state motion to be unstable.
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Now consider the different clock manifestation. The basic results and predictions are the same
as for the identical-clock manifestation. Thus, there are two clocklike modes and one non-
clocklike mode. In one clocklike mode, the high-frequency mode, the pendulums move in the
same phase and in the other, the intermediate frequency mode, the pendulums move in the
opposite phase. Simultaneous same-direction escapement firings produce a large velocity change
in the clocklike, pendulums moving-in-same-phase mode, and significantly smaller velocity
changes in the other two modes; simultaneous opposite-direction escapement firings produce a
large velocity change in the clocklike, pendulums-moving-in-opposite-phase mode, and
significantly smaller velocity changes in the other two modes; and the magnitudes of these large
velocity changes are not too different. The modal decay rate of the clocklike, pendulums-moving-
in-opposite-phase mode is significantly less than that of the clocklike, pendulums-moving-in-
same-phase mode. The constrained single-degree-of-freedom system corresponding to the
clocklike, pendulums-moving-in-opposite-phase mode has a significantly greater mean pendulum
velocity amplitude than does the constrained system corresponding to the clocklike, pendulums-
moving-in-same-phase mode. We therefore predict that the different clock idealized system will
also synchronize, with a synchronized steady-state motion that is accurately approximated by the
steady-state motion of the modally constrained, clocklike, pendulums-moving-in-opposite-phase
mode, single-degree-of-freedom system. Note that the small asymmetries in going to the different-
clock system, while only reducing mean constrained pendulum velocity amplitude from 1:0 to
about 0:908, have reduced pendulum 3’s amplitude significantly more, to about 0:772. The writer
guesses that this amplitude is significantly above a restart threshold of a modified model that
includes threshold friction and finite escapement limits.
Before using this three-degree-of-freedom model to examine when no synchronization at all

might be predicted (in Section 7), a model that also includes the suspended clock-case feature of
Huygens’ setup is analyzed.
6. Two-coupled-clock, sliding-support, suspended-clock-case, five-degree-of-freedom model

6.1. Model and equations

Fig. 1 shows the two-coupled-clock, sliding-support, suspended-clock-case, five-degree-of-
freedom model. The coordinate vector is now defined as x � fx1; u2; y; u4;x5g, where the xi; i ¼
1; 5 now denote the horizontal relative displacements of the pendulum mass centers measured
from the centerlines of the pivoted clock cases, the uj; j ¼ 2; 4 denote the horizontal relative
displacements of the clock-case mass centers measured from vertical lines drawn on the support
mass, and y still denotes the absolute horizontal displacement of the support mass (this coordinate
ordering again reflects the connectivity of the rigid bodies that comprise the model).
Twelve additional parameters describe this pivoted-case model: the individual clock-case

masses, mj; the individual clock-case lengths, ej; the individual squares of ratios of radii of
gyration about mass centers to lengths, aj; the individual pivot damping constants, cpivot j; the
individual air damping constants, cair j; and the individual offsets of the pendulum pivots (the
downward distances along the clock-case centerlines from the clock-case pivots to the pivots of
the pendulums), oj; j ¼ 2; 4. As with the individual clock parameters, it is convenient to introduce
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redundant average and half-difference clock-case parameters, using definitions like, mcase �

ðm2 þm4Þ=2 and �case m � ðm2 �m4Þ=ð2mcaseÞ. The matrices and the impulse forcing vector for this
system can then be written as

Mx �
1

mð1þ aÞ

m11 m12 m1 0 0

m12 m22 m23 0 0

m1 m23 m33 m43 m5

0 0 m43 m44 m54

0 0 m5 m54 m55

2
666666664

3
777777775
; Kx �

1

mg=e

k11 k12 0 0 0

k12 k22 0 0 0

0 0 2ksup 0 0

0 0 0 k44 k54

0 0 0 k54 k55

2
666666664

3
777777775
,

Cx �
1

cpivot þ cair

c11 c12 cair 1 0 0

c12 c22 c23 0 0

cair 1 c23 c33 c43 cair 5

0 0 c43 c44 c54

0 0 cair 5 c54 c55

2
666666664

3
777777775
; fqxg �

1

I

I1 signð _x
�
1;jþ1Þ

0

0

0

I5 signð _x
�
5;jþ1Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
, ð16Þ

with the additional matrix elements defined as

mii � mið1þ aiÞ; i ¼ 1; 5; mij � mi

oj þ ei

ej

þ ai
ei

ej

� �
; i; j ¼ 1; 2 or 5; 4,

mjj � mjð1þ ajÞ þmi

oj þ ei

ej

� �2

þmiai
ei

ej

; i; j ¼ 1; 2 or 5; 4,

mj3 � mi

oj þ ei

ej

� �
þmj; i; j ¼ 1; 2 or 5; 4; m33 � m1 þm2 þ 2msup þm4 þm5,

kii � mig=ei; i ¼ 1; 5; kij � mig=ej; i; j ¼ 1; 2 or 5; 4,

kjj �
mig

ej

� �
oj þ ei

ej

� �
þ

mjg

ej

� �
; i; j ¼ 1; 2 or 5; 4,

cii � cpivot i þ cair i; i ¼ 1; 5; cij � cair i

oj þ ei

ej

� �
; i; j ¼ 1; 2 or 5; 4,

cjj � cair i

oj þ ei

ej

� �2

þ cpivot j þ cair j; i; j ¼ 1; 2 or 5; 4,

cj3 � cair j þ cair i

oj þ ei

ej

� �
; i; j ¼ 1; 2 or 5; 4; c33 � cair 1 þ cair 2 þ 2csup þ cair 4 þ cair 5, (17)
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and, as for the previous model, if only escapement 1 fires, I5 is to be set to zero; if only escapement
5 fires, I1 is to be set to zero; and if both escapements fire simultaneously, the impulse forcing
vector is to be used as written.

6.2. Setting parameter values

Even less information is available to use for estimating the actual values of the clock-case
parameters of Huygens’ setup [4] than for the clock parameters. But, as has been seen for the
previous models, as long as basic properties of the system are captured, useful results can be
obtained. In this spirit, and making educated guesses as to Huygens’ design constraints and goals,
new parameters are defined and their values set and some old parameters are redefined and/or
their values reset:

mcase � mcase=m ¼ 85; acase ¼ 0:4; m ¼ 25; ocase ¼ 1:0 � e,

on case �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcaseg=ecase

mcaseð1þ acaseÞ

s
¼ 0:5on pend,

on sup �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ksup=ð2mþ 2mcase þ 2msupÞ

q
¼ 0:4on pend,

odecay case �
cpivot case þ cair case

2mcaseð1þ acaseÞ
¼ 10odecay pend,

odecay sup �
2cair þ 2cair case þ 2csup

2ð2mþ 2mcase þ 2msupÞ
¼ 14odecay pend,

f air case � cair case=ðcair case þ cpivot caseÞ ¼ 0:5. (18)

Some reasons for these choices follow. The high value chosen for mcase reflects Huygens having
made the extended clock-cases as massive as practicable in order to keep the clock-cases near
vertical on a rocking ship. The reduction in m reflects the writer having increased support mass
over his best guess for the previous, translating-clock-case model, to include effects of equivalent
translating clock-case mass there. The choice for acase reflects the extended clock-case masses
being spread out considerably farther around their mass centers than the pendulum masses are
around theirs. The inertia parameter choices for this model then reflect the basic system features
that the extended clock-case masses and half the support mass are each considerably greater than
mean pendulum mass, with mean extended-clock-case mass also being significantly greater than
half the support mass.
The choice of the relatively small value for ocase reflects the writer’s belief that Huygens would

have made the offsets as small as practicable so as to impart as little horizontal clock-case relative
motion to the pendulums as possible. The value chosen for on case reflects the writer’s guess that
Huygens designed to a spatial constraint that clock-case length be at most about four times
pendulum length. The value chosen for on sup is arbitrary; it has been guessed, with virtually no
information, to be a ‘most likely’ value; and its value is close enough to that of on case to also
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explore whether some ‘resonant interaction’ between these two frequencies significantly affects the
clocklike mode shapes of the related dissipationless linear system (no obvious effects were found).
The choices of the decay friction parameter values reflect the judgment that both case

and support friction, while small, were still significantly greater than pendulum friction, which
was extremely small. These choices also reflect the judgment that support friction, which
was mostly chair-back friction, was greater than clock-case friction. The choice of an equal
division of clock-case friction between its pivot- and air-friction parts, like the previously assumed
division of pendulum friction between these parts, is arbitrary. These choices reflect the judg-
ment that relatively large changes in these parameter values will have negligible effects on the
basic results.

6.3. Identical clock/clock-case results

Although it is unlikely that Huygens’ extended clock-cases were near being identical, it is
instructive to analyze an identical-clock, identical-clock-case model. Results of this analysis are
shown in the ‘Identical Clocks and Clock-Cases’ column of Table 2. Two clocklike mode/
frequency pairs also exist for this model. In the clocklike, pendulums-in-opposite-phase mode (4)
each clock case moves opposite to its pendulum, and, because of system symmetries, the support
mass does not move. Contrastingly, in the clocklike, pendulums-in-same-phase mode (5) each
clock case moves in-phase with its pendulum, and the support mass moves in-opposite-phase to
the other four masses. Results for mode (3), which has the greatest modal pendulum amplitudes of
the three non-clocklike modes, are also shown. In mode (3) the two clock-cases move in-phase
with each other against (in opposite-phase with) the two pendulums and the support mass. So, on
the basis of relative pendulum amplitudes, each clocklike mode is clearly favored over each of the
three non-clocklike modes. However, the small pendulum-amplitude advantage of clocklike mode
(4) over clocklike mode (5), would not, by itself, lead most observers to conclude that mode (4) is
clearly favored over mode (5). So, again, analysis of the related dissipationless linear system
favors the clocklike modes over the non-clocklike ones but does not immediately (not looking
ahead to the analyses of the related damped linear system) favor one clocklike mode over the
other.
The related dissipationless nonlinear system also favors the clocklike modes over the non-

clocklike modes and does not clearly favor one clocklike mode over the other. Individual
escapement firings cause relatively large and approximately equal modal velocity changes in the
clocklike modes and significantly smaller modal velocity changes in the non-clocklike modes. As
with the three-degree-of-freedom model, this then leads to simultaneous same direction
escapement firings favoring the clocklike, pendulums-in-same-phase mode and to simultaneous
opposite direction escapement firings favoring the clocklike, pendulums-in-opposite-phase mode,
with no decisive advantage of one over the other.
Analyzing the related damped linear system shows that the pendulums-in-opposite-phase

clocklike mode [4] has a significantly lower decay rate than the corresponding pendulums-in-
same-phase clocklike mode [5]. Part of this favoring occurs as for the three-degree-of-freedom
model, because the relatively heavily damped support mass moves through lower amplitudes in
the favored damped mode. But an additional part occurs because the relatively heavily damped
clock cases now also move through lower amplitudes in the favored damped mode.
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The analyses of the related modally constrained nonlinear systems then show that, primarily
because of the difference in modal decay rates, steady-state pendulum velocity amplitudes are
significantly greater for the clocklike, modally constrained, pendulums-in-opposite-phase motions
than for the corresponding same-phase motions. Thus, the analyses guide us to predict that the
idealized identical clocks will again synchronize, all mass points moving nearly proportionally and
the pendulums moving in opposite-phase. Note that this symmetric five-degree-of-freedom system
cannot achieve the ideal, pendulum-only-dissipation of the fixed pivot clock—even though the
support mass remains motionless in the favored pendulums-in-opposite-phase modal motion, the
clock-cases still must move against their relatively high friction dampers. However, the high ratio
of clock-case mass to pendulum mass makes these clock-case amplitudes small, so that mean
pendulum velocity amplitude is only reduced to about 0:986 times the ideal amplitude.
6.4. Non-identical clock/clock-case results

Half difference parameters are chosen for the non-identical clock/clock-case model as follows.
First, the clock half difference parameters are made the same as those of the three-degree-of-
freedom model. Then, observing from a sketch in Huygens’ laboratory notebook [4] that Huygens
seemed to be trying to determine how heavy the extended clock cases needed to be by adding
significant extra mass to the bottom of one clock case, and noting that there were no particular
reasons for Huygens to try making the clock-cases identical, the following arbitrary half difference
clock-case parameters were chosen (all in the direction that would make clock-case 4 more
sluggish): �case m ¼ �0:20; �case a ¼ �0:08; �case e ¼ �0:10; �case cpivot ¼ �0:08; �case cair ¼ �0:08;
�case o ¼ �0:06.

2

Results of the analyses of this non-identical clock/clock-case model are shown in the last
column of Table 2. The basic result is that the asymmetric, five-degree-of-freedom system is
predicted to behave essentially as the symmetric (identical-clock/clock-case) one does—the clocks
will synchronize, with the pendulums moving nearly proportionally in the clocklike, pendulums-
in-opposite-phase mode of the related dissipationless linear system. The key results are that:
although the modal decay rate ratio changes from about 1:018=2:756 � 0:37 to 1:228=2:462 �
0:51 in going from the symmetric- to the asymmetric-configuration, the modal decay rate ratio still
significantly favors the pendulums-in-opposite-phase mode over the pendulums-in-same-phase
mode; and, although the constrained steady-state pendulum-mean-velocity-amplitude ratio
changes from about 0:986=0:220 � 4:48 to about 0:740=0:236 � 3:14 in going from the symmetric-
to the assymmetric-configuration, the pendulum-mean-velocity-amplitude ratio still significantly
favors the pendulums-in-opposite-phase mode over the pendulums-in-same-phase mode. Note
that going to the assymmetric configuration causes additional decreases in constrained pendulum
velocity amplitudes from the ideal: the change due to allowing the clock-cases to pivot reduces
(both) pendulum velocity amplitudes to 0.986 times the ideal; also allowing assymmetries further
reduces the mean pendulum velocity amplitude to 0.740 times the ideal and that of pendulum 5 to
0.547 times the ideal (a value the writer guesses is still significantly above a restart threshold for a
model with realistically modeled threshold friction and escapement limits).
2Offsets, oj , appear in numerator terms of the diagonal elements of the even rows of the inertia and damping matrices,

so the writer has guessed that a negative sign here will also tend to make clock-case 4 more sluggish.
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So we see that allowing the clock-cases to pivot and allowing relatively large assymmetries still
gives systems that are predicted to synchronize, even though predicted constrained pendulum
velocity amplitudes depart significantly from those of fixed pivot clocks.
7. Predicting absence of synchronization and speculations

7.1. Predicting absence of synchronization

First observe that a necessary condition for synchronization to be predicted is that one modal
decay rate be significantly less than all others. This suggests a way to modify models of Huygens’
setup so that the absence of synchronization will be predicted. Take the three-degree-of-freedom
models of Section 5 and, while keeping all other parameters constant, increase support mass by a
factor of 14, the (former) value of f decay, the ratio of support decay rate to pendulum decay rate
(see Eq. (10)). We also see that, since support mass dominates the denominator of the definition of
odecay sup, this change reduces support decay rate so that it becomes about equal to pendulum
decay rate. This near equality of constrained decay rates, in turn, makes all three modal decay
rates approximately equal, preventing one damped mode from persisting after all others have
decayed. (Incidentally note that, because support mass was originally much greater than
pendulum mass, this further increase does not significantly change the basic features of the
clocklike mode/frequency pairs.)
Analysis results are listed in Table 3. We see by comparing the modal decay rates and

constrained velocity amplitude components of the identical clock models of Tables 1 and 3 that
increasing support mass has wiped out the advantages of the clocklike, pendulums-in-opposite-
phase mode over the clocklike, pendulums-in-same-phase mode. For the original support mass
value the modal decay rate ratio was 1=2:32 � 0:4351, and the pendulum velocity amplitude
ratio was 1=0:440 � 2:27b1, while with the increase in support mass these ratios have become
1:0=1:002 � 0:9985=1 and 1:0=1:00099 � 0:999b=1. Because the modal decay rates have become
approximately equal, the clocklike, pendulums-in-opposite-phase mode of the related damped
linear system would not persist after the clocklike, pendulums-in-same-phase mode had decayed.
Both clocklike modes would decay at approximately the same rate; neither is favored over the
other; and we would predict that synchronization is unlikely to occur.
The modal decay rate comparison behaves similarly for the different-clock model. Increasing

support mass changes the modal decay rate ratio from 1:06=2:26 � 0:4751 to 1:075=0:926 �
1:165=1, so that again, neither clocklike mode is significantly favored over the other by friction
alone. However, the modally constrained mean pendulum velocity amplitude comparison might
be judged to favor one clocklike mode over the other, and a clear prediction of synchronization or
no-synchronization does not follow from the approximate analyses. The mean pendulum velocity
amplitude ratio changes from 0:908=0:449 � 2:02b1 to 0:463=0:677 � 0:68b=1, and so, since
1=0:68 � 1:46 might be judged to be significantly greater than one, this comparison now seems to
favor the constrained, clocklike, pendulums-in-same-phase mode f3g over the constrained,
clocklike, pendulums-in-opposite-phase mode f2g. However, the constrained mode f3g velocity
amplitude of pendulum 1 is only about 0.079, a value that the writer guesses would not
significantly exceed a restart threshold. So the writer thinks it is unlikely that the corresponding



ARTICLE IN PRESS

T
a
b
le

3
N
o
n
-s
y
n
ch
ro
n
iz
in
g
,
th
re
e-
d
eg
re
e-
o
f-
fr
ee
d
o
m
,
tw

o
-c
lo
ck
,
sl
id
in
g
-p
iv
o
t
m
o
d
el
s

R
o
w

It
em

S
y
m
b
o
l

Id
en
ti
ca
l
cl
o
ck
s

C
lo
ck

1
sl
u
g
g
is
h

1
N
a
tu
ra
l
fr
eq
u
en
cy
,

o
n
ð1
Þ=
o

n
p
en
d
,

0
.1
8
9
6
8
4
,

0
.1
8
9
6
8
4
,

2
m
o
d
a
l
v
ec
to
r

x
ð1
Þ

f0
:0
0
1
7
3
;
0
:0
4
6
7
0
;
0
:0
0
1
7
3
g

f0
:0
0
1
7
4
;
0
:0
4
6
7
0
;
0
:0
0
1
7
1
g

3
o

n
ð2
Þ=
o

n
p
en
d
,

1
.0
,

0
.9
9
6
0
5
2
,

4
x
ð2
Þ

f1
:0
;
0
;
�
1
:0
g

f1
:4
0
8
7
4
;
�
0
:0
0
1
4
9
;
�
0
:0
8
6
3
8
g

5
o

n
ð3
Þ=
o

n
p
en
d
,

1
.0
0
1
1
1
1
,

1
.0
0
5
1
1
2
,

6
x
ð3
Þ

f1
:0
0
1
0
7
;
�
0
:0
0
2
2
4
;
1
:0
0
1
0
7
g

f0
:0
8
7
4
5
;
�
0
:0
0
1
6
8
;
1
:4
1
5
8
8
g

7
C
h
a
n
g
e
in

D
_ w

jþ
1
es
c
1
o
n
ly
=D

v
f0
:0
0
1
2
2
;
0
:7
0
7
1
1
;
0
:7
0
7
8
6
g

f0
:0
0
1
0
8
;
0
:8
7
6
5
9
;
0
:0
5
4
4
2
g

8
v
el
o
ci
ty

v
ec
to
rs

D
_ w

jþ
1
es
c
3
o
n
ly
=D

v
f0
:0
0
1
2
2
;
�
0
:7
0
7
1
1
;
0
:7
0
7
8
6
g

f0
:0
0
1
3
6
;�

0
:0
6
8
4
1
;1
:1
2
1
3
2
g

9
D
_ w

jþ
1
sa
m
e
d
ir
=D

v
f0
:0
0
2
4
4
;
0
;
1
:4
1
5
7
3
g

f0
:0
0
2
4
4
;
0
:8
0
8
1
9
;
1
:1
7
5
7
4
g

1
0

D
_ w

jþ
1
o
p
p
d
ir
=D

v
f0
;
1
:4
1
4
2
1
;
0
g

f�
0
:0
0
0
2
7
;
0
:9
4
5
0
0
;
�
1
:0
6
6
9
0
g

1
1

1
2

1
3

M
o
d
a
l
a
n
d

co
u
p
li
n
g

d
ec
a
y
ra
te
s

o
d
ec
a
y
ði
;j
Þ=
o

d
ec
a
y
p
en
d

1
:0
2
8

0
�
0
:0
2
4

0
1
:0

0

�
0
:0
2
4

0
1
:0
0
2

1
:0
2
8

�
0
:0
1
5
�
0
:0
1
9

�
0
:0
1
5

1
:0
7
5

0
:0
1
0

�
0
:0
1
9

0
:0
1
0

0
:9
2
6

1
4

o
d
ec
a
y
½k
�=
o

d
ec
a
y
p
en
d

f1
:0
2
8
;1
:0
;1
:0
0
2
g

f1
:0
2
8
;1
:0
7
5
;0
:9
2
6
g

1
5

C
o
n
st
ra
in
ed

fv
P
f1
g
g x
=v

P
f0
:0
0
0
0
0
1
;0
:0
0
0
0
1
5
;0
:0
0
0
0
0
1
g

f0
:0
0
0
0
0
1
;0
:0
0
0
0
1
5
;0
:0
0
0
0
0
1
g

1
6

v
el
o
ci
ty

fv
P
f2
g
g x
=v

P
f1
:0
;0
:0
;�

1
:0
g

f0
:8
7
2
7
0
;�

0
:0
0
0
9
2
;�

0
:0
5
3
5
1
g

1
7

co
m
p
o
n
en
ts

fv
P
f3
g
g x
=v

P
f1
:0
0
0
9
9
;�

0
:0
0
2
2
4
;1
:0
0
0
9
9
g

f0
:0
7
8
8
3
;�

0
:0
0
1
5
1
;1
:2
7
6
2
8
g

M. Senator / Journal of Sound and Vibration 291 (2006) 566–603 599



ARTICLE IN PRESS

M. Senator / Journal of Sound and Vibration 291 (2006) 566–603600
system with realistically modeled threshold friction and escapement limits would actually develop
a stable synchronized steady-state motion (more detailed speculations follow).

7.2. Speculations

The writer believes that, for suitably chosen initial conditions, the behaviors of the idealized
models analyzed herein would accurately reflect the behaviors of the real systems they model. As
noted, however, idealized- and real-model behaviors are expected to differ significantly when
initial conditions and parameters are such that a pendulum passes through a low-energy (low
displacement- and velocity-magnitude) cycle. For real systems (for models that include threshold
friction and small, but finite, displacement-interval and velocity-magnitude firing requirements on
the escapements), the expected behavior is for a pendulum to stop during its first low energy cycle.
To ensure starting, consider behaviors of example real systems having high-energy initial

conditions. First, consider the real system corresponding to the different clock model of Table 1,
started with initial displacements of zero and initial velocities equal to 2on pendxð2Þ. Almost all
initial energy of this system (four times the reference energy corresponding to each scaled,
normalized, undamped modal vector) would be in the intermediate-frequency damped normal
mode [2], with small amounts in the other two. The trajectory projection on the ð _x1; _x3Þ plane
would be near an escapement-firing-boosted, slowly decaying, narrow spiral, centered about a line
in the intermediate-frequency modal direction (resembling a combination of Figs. 5 and 6, with
four escapement-firing-boosts per cycle instead of two). Zero pendulum displacements would
occur nearly simultaneously with opposite direction velocities, and the corresponding, nearly
simultaneous escapement firings would, therefore, tend to put most of the supplied energy into the
intermediate frequency mode [2]. The system would be expected to slowly approach (over a large
number of pendulum cycles, as illustrated by the transient trajectory of Fig. 3) a steady-state that
has the features of the steady-state motion of the related constrained nonlinear system {2} (the
steady-state trajectory projection would be like that of Fig. 6, except that there would be a
neighboring pair of small, escapement-firing-caused velocity changes replacing each small
simultaneous-escapement-firing-caused change). An observer would see the two pendulums
oscillating at about the constrained pendulum frequency, on pend, moving approximately in-
opposite-phase to each other, with slowly decreasing amplitudes that remain in the ratio of the
pendulum amplitude components of the modal vector and that approach the amplitudes predicted
for the related, modally constrained single-degree-of-freedom system {2}. No small pendulum
amplitude cycles would occur during this approach to a steady state, so the writer expects that for
these initial conditions the real system would synchronize.
Next, consider the same (real) system, now started with similar, equal-energy initial conditions

that correspond to the high-frequency clocklike mode (3). The writer guesses that the resulting
motion would occur in two recognizably different stages. First, over a relatively large number of
pendulum cycles, the system would behave analogously to its previous behavior, modified now by
having a higher rate of decay and by the escapements firing (still nearly simultaneously) in the
same, rather than opposite, directions. During this stage the amplitudes would slowly decay to
some values between the starting amplitudes and the calculated amplitudes for the related,
modally constrained single-degree-of-freedom system f3g. The writer guesses that amplitudes
would stabilize before the difference between the clocklike modal decay rates causes the
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escapement firings to move significantly from being nearly simultaneous and in the same
direction. Then, once amplitudes stabilize, the second recognizable stage would begin. This stage
would involve a slow change in the proportions of system energy in each clocklike mode. Energy
fraction in the favored clocklike mode [2] would slowly increase. During the slow increase, the two
escapements would have to gradually change from nearly simultaneous same direction firings to
nearly simultaneous opposite direction firings.
To clarify what could happen during such a slow transition, consider an idealized, simplified

half-way situation, formed by restarting the system with equal energies in each of the two
undamped clocklike modes. The initial displacements would again be zero, but the initial
velocities would be aon pend � ðxð2Þj! þxð3ÞÞ, where the scalar, a, would be high enough so that both
pendulums would move through at least one cycle. The ‘bounding’ parallelogram (analogous to
that of Fig. 4) would now be approximate, as its modal components would be narrow spirals
rather than lines. It would have sides that shrink exponentially at different rates, that are initially
approximately equal in length, and that are approximately orthogonal to each other.
Additionally, because the component oscillations are both clocklike, their frequencies, while
distinct, would be approximately equal. Thus, temporarily ignoring effects of escapement firings,
we see that beating could occur—the almost same frequency pendulum oscillations could change,
over many cycles, from being approximately in the same phase, to being approximately one-
quarter cycle out of phase, to being approximately in opposite phase, etc., until the energy in the
more heavily damped mode becomes negligible. Starting at the corner of the sum diagonal of the
initially nearly square parallelogram, the trajectory generating point would oscillate at a
frequency near on pend, initially tracing a path that lies in the neighborhood of this diagonal. After
many pendulum oscillation cycles (about on pend=½4ðond ½3� � ond ½2�Þ�) this point would trace a path
that lies in the neighborhood of the ellipse inscribed in the suitably shrunken parallelogram. And
then, after about the same additional number of cycles, the path would lie in the neighborhood of
the difference diagonal of the further shrunken parallelogram. If, during the shrinking of the
parallelogram, one of its diagonals should fall close to one of the coordinate axes while the
trajectory generating point is moving in the neighborhood of this diagonal, then the cyclic velocity
and displacement amplitudes of the pendulum corresponding to the other coordinate axis would
be low, and that real pendulum would stop moving.
It would take a large number of pendulum oscillation cycles for this system to change from near

resonant motion in its same-phase clocklike mode [3] to near resonant motion in its opposite-
phase clocklike mode [2]. The writer expects that during this long interval, conditions would arise
with the trajectory generating point moving in the neighborhood of a diagonal that lies near one
of the coordinate axes. This means that most of the system energy would be associated with one
pendulum, and the other pendulum would go through a low-energy cycle and stop moving. Thus,
the writer concludes that when the possibility of synchronization is predicted and compatible
initial conditions are applied, real clocks would indeed synchronize. If initial conditions
corresponding to the non-favored clocklike mode are applied, the writer expects a temporary, but
ultimately unstable synchronization to occur. The writer expects that eventually the system would
try to change to the favored clocklike mode and that during this slow change one of the
pendulums would stop moving.
The behaviors of the real systems corresponding to the models of Table 3 are even more

uncertain. Because of the extremely large support mass value, changes between clocklike resonant
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modes would take significantly more pendulum cycles than corresponding changes for the models
of Table 1. Additionally, because neither clocklike mode is significantly favored over the other,
any small differential-friction- or differential-escapement-firing-caused changes between modes
would tend to take many more pendulum oscillation cycles. Thus, the writer guesses that if the
real system corresponding to the identical clock model of Table 3 were started with high-energy
modal initial conditions corresponding to either clocklike mode, the system would initially slowly
approach the steady-state motion of the appropriate related constrained nonlinear system, but
that eventually one or the other pendulums would stop.
Because the clocklike modal vectors of the different-clock model of Table 3 each have one low

pendulum amplitude, the writer expects the real, different-clock system to behave differently,
stopping after fewer pendulum cycles. The writer expects that when started with high modal
energy initial conditions, the real different-clock system would continue to move approximately in
that mode until the amplitude of the low-amplitude pendulum gets small enough, and then that
pendulum would stop. The writer does not expect the nominal modal steady-state f2 or 3g, to
occur before the low-amplitude pendulum stops.
8. Summary

An approximate technique is developed for quantitatively predicting whether two Huygens-like
coupled-pendulum-clocks can synchronize. The technique consists of analyzing a sequence of
models that are related to nonlinear, multi-degree-of-freedom models of Huygens’ setups. These
models capture essential features of Huygens’ setups—in particular that the escapements
impulsively resupply system energy; that the clocks are not identical; and that the extended clock-
cases can be suspended from a common support that can move horizontally. The technique is
used to predict that Huygens’ system would synchronize even if the differences between the clocks
drastically exceed the likely differences of Huygens’ setups.
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